6.2: Graphs of Other Trigonometric Functions

- Tangent Function $\tan (x)=\frac{\sin (x)}{\cos (x)}$. Vertical Asymptotes are when the denominator is zero. Period is π. Domain is where the denominator is not zero. Range is all real numbers.

- Secant Function $\sec (x)=\frac{1}{\cos (x)}$. Vertical Asymptotes are when the denominator is zero. Domain is where the denominator is not zero. Range is $(-\infty,-1] \cup[1, \infty)]$. Period is 2π.

- Cotangent Function $\cot (x)=\frac{\cos (x)}{\sin (x)}$. Vertical Asymptotes are when the denominator is zero. Period π. Domain is where the denominator is not zero. Range is all real numbers.

- Cosecant Function $\csc (x)=\frac{1}{\sin (x)}$. Vertical Asymptotes are when the denominator is zero. Domain is where the denominator is not zero. Range is $(-\infty,-1] \cup[1, \infty)]$. Period 2π.

- Transformations: Transformations may be applied as before to change the period, location of asymptotes, and domain and range.
For example, for function $f(x)=A \tan (B x+C)+D$, period is $P=\frac{\pi}{|B|}$; asymptotes are calculated by solving for x in $B x+C=\frac{\pi}{2}+k \pi$; domain is all x but the x-values found in $B x+C=\frac{\pi}{2}+k \pi$; range is \mathbb{R}.
And for function $f(x)=A \sec (B x+C)+D$, period is $P=\frac{2 \pi}{|B|}$; asymptotes are calculated by solving for x in $B x+C=\frac{\pi}{2}+2 k \pi$; domain is all x but the x-values found in $B x+C=\frac{\pi}{2}+2 k \pi$; range is $(-\infty,-A] \cup[A, \infty)$.

1. Consider the function $f(x)=3 \tan (2 x)-5$.
(a) Find the period.
(b) Find the vertical asymptotes in one period.
(c) Find the domain.
(d) Find the range.
2. Consider the function $f(x)=7 \sec (5 x)-5$.
(a) Find the period.
(b) Find the vertical asymptotes in one period.
(c) Find the domain.
(d) Find the range.

Related Video

- Graph of Other Trigonometric Functions: https://mediahub.ku.edu/media/MATH+-+Graph+of+Other+Trigonometric+Functions.m4v/l_c7f8un41

